Using computer simulation. Based on examples from the infer package. Code for Quiz 13.
Load the R packages we will use.
set.seed(123)
hr_2_tidy.csv is the name of your data subset
Read it into and assign to hr
hr <- read_csv("https://estanny.com/static/week13/data/hr_2_tidy.csv",
col_types = "fddfff")
use skim to summarize the data in hr
skim(hr)
Name | hr |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 4 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
gender | 0 | 1 | FALSE | 2 | mal: 256, fem: 244 |
evaluation | 0 | 1 | FALSE | 4 | bad: 154, fai: 142, goo: 108, ver: 96 |
salary | 0 | 1 | FALSE | 6 | lev: 95, lev: 94, lev: 87, lev: 85 |
status | 0 | 1 | FALSE | 3 | fir: 194, pro: 179, ok: 127 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
age | 0 | 1 | 39.86 | 11.55 | 20.3 | 29.60 | 40.2 | 50.1 | 59.9 | ▇▇▇▇▇ |
hours | 0 | 1 | 49.39 | 13.15 | 35.0 | 37.48 | 45.6 | 58.9 | 79.9 | ▇▃▂▂▂ |
The mean hours worked per week is: 49.4
specify that hours is the variable of interest
Response: hours (numeric)
# A tibble: 500 x 1
hours
<dbl>
1 78.1
2 35.1
3 36.9
4 38.5
5 36.1
6 78.1
7 76
8 35.6
9 35.6
10 56.8
# ... with 490 more rows
hypothesize that the average hours worked is 48
hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48)
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500 x 1
hours
<dbl>
1 78.1
2 35.1
3 36.9
4 38.5
5 36.1
6 78.1
7 76
8 35.6
9 35.6
10 56.8
# ... with 490 more rows
generate 1000 replicates representing the null hypothesis
hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48) %>%
generate(reps = 1000, type = "bootstrap")
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500,000 x 2
# Groups: replicate [1,000]
replicate hours
<int> <dbl>
1 1 39.7
2 1 44.3
3 1 46.8
4 1 33.7
5 1 39.6
6 1 39.5
7 1 40.5
8 1 55.8
9 1 72.6
10 1 35.7
# ... with 499,990 more rows
The output has 500,000
rows
calculate the distribution of statistics from the generated data
Assign the output null_t_distribution
Display null_t_distribution
null_t_distribution <- hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48) %>%
generate(reps = 1000, type = "bootstrap") %>%
calculate(stat = "t")
null_t_distribution
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 1,000 x 2
replicate stat
<int> <dbl>
1 1 0.891
2 2 -0.526
3 3 -0.386
4 4 -0.893
5 5 0.491
6 6 -0.483
7 7 2.08
8 8 -1.23
9 9 -0.424
10 10 -1.21
# ... with 990 more rows
null_t_distribution
has 1000 t-statsvisualize the simulated null distribution
visualize(null_t_distribution)
calculate the statistic from your observed data
Assign the output observed_t_statistic
Display observed_t_statistic
observed_t_statistic <- hr %>%
specify(response = hours) %>%
hypothesize(null = "point", mu = 48) %>%
calculate(stat = "t")
observed_t_statistic
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 1 x 1
stat
<dbl>
1 2.37
If the p-value < 0.05? yes (yes/no)
Does your analysis support the null hypothesis that the true mean number of hours worked by female and male employees was the same? no (yes/no)
hr_1_tidy.csv is the name of your data subset
hr_anova <- read_csv("https://estanny.com/static/week13/data/hr_1_tidy.csv",
col_types = "fddfff")
Q: Is the average number of hours worked the same for both genders?
use skim to summarize the data in hr_2 by gender
Use geom_boxplot to plot distributions of hours worked by gender
specify the variables of interest are hours and gender
hypothesize that the number of hours worked and gender are independent
generate 1000 replicates representing the null hypothesis
The output has 500,000 rows
calculate the distribution of statistics from the generated data
Assign the output null_distribution_2_sample_permute
Display null_distribution_2_sample_permute
null_t_distribution has 1000 t-stats
visualize the simulated null distribution
calculate the statistic from your observed data
Assign the output observed_t_2_sample_stat
Display observed_t_2_sample_stat
get_p_value from the simulated null distribution and the observed statistic
shade_p_value on the simulated null distribution
Is the p-value < 0.05? no (yes/no)
Does your analysis support the null hypothesis that the true mean number of hours worked by female and male employees was the same? yes (yes/no)
hr_3_tidy.csv is the name of your data subset
Read it into and assign to hr_anova
hr_anova <- read_csv("https://estanny.com/static/week13/data/hr_1_tidy.csv",
col_types = "fddfff")
Q: Is the average number of hours worked the same for all three status (fired, ok and promoted) ?
use skim to summarize the data in hr_anova by status
Name | Piped data |
Number of rows | 500 |
Number of columns | 6 |
_______________________ | |
Column type frequency: | |
factor | 3 |
numeric | 2 |
________________________ | |
Group variables | status |
Variable type: factor
skim_variable | status | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|---|
gender | fired | 0 | 1 | FALSE | 2 | fem: 96, mal: 89 |
gender | ok | 0 | 1 | FALSE | 2 | fem: 77, mal: 76 |
gender | promoted | 0 | 1 | FALSE | 2 | fem: 87, mal: 75 |
evaluation | fired | 0 | 1 | FALSE | 4 | bad: 65, fai: 63, goo: 31, ver: 26 |
evaluation | ok | 0 | 1 | FALSE | 4 | bad: 69, fai: 59, goo: 15, ver: 10 |
evaluation | promoted | 0 | 1 | FALSE | 4 | ver: 63, goo: 60, fai: 20, bad: 19 |
salary | fired | 0 | 1 | FALSE | 6 | lev: 41, lev: 37, lev: 32, lev: 32 |
salary | ok | 0 | 1 | FALSE | 6 | lev: 40, lev: 37, lev: 29, lev: 23 |
salary | promoted | 0 | 1 | FALSE | 6 | lev: 37, lev: 35, lev: 29, lev: 23 |
Variable type: numeric
skim_variable | status | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|---|
age | fired | 0 | 1 | 38.64 | 11.43 | 20.2 | 28.30 | 38.30 | 47.60 | 59.6 | ▇▇▇▅▆ |
age | ok | 0 | 1 | 41.34 | 12.11 | 20.3 | 31.00 | 42.10 | 51.70 | 59.9 | ▆▆▆▆▇ |
age | promoted | 0 | 1 | 42.13 | 10.98 | 21.0 | 33.40 | 42.95 | 50.98 | 59.9 | ▆▅▆▇▇ |
hours | fired | 0 | 1 | 41.67 | 7.88 | 35.0 | 36.10 | 38.90 | 43.90 | 75.5 | ▇▂▁▁▁ |
hours | ok | 0 | 1 | 48.05 | 11.65 | 35.0 | 37.70 | 45.60 | 56.10 | 78.2 | ▇▃▃▂▁ |
hours | promoted | 0 | 1 | 59.27 | 12.90 | 35.0 | 51.12 | 60.10 | 70.15 | 79.7 | ▆▅▇▇▇ |
Use geom_boxplot to plot distributions of hours worked by status
hr_anova %>%
ggplot(aes(x = status, y = hours)) +
geom_boxplot()
specify the variables of interest are hours and status
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 500 x 2
hours status
<dbl> <fct>
1 36.5 fired
2 55.8 ok
3 35 fired
4 52 promoted
5 35.1 ok
6 36.3 ok
7 40.1 promoted
8 42.7 fired
9 66.6 promoted
10 35.5 ok
# ... with 490 more rows
hypothesize that the number of hours worked and status are independent
hr_anova %>%
specify(response = hours, explanatory = status) %>%
hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
hours status
<dbl> <fct>
1 36.5 fired
2 55.8 ok
3 35 fired
4 52 promoted
5 35.1 ok
6 36.3 ok
7 40.1 promoted
8 42.7 fired
9 66.6 promoted
10 35.5 ok
# ... with 490 more rows
generate 1000 replicates representing the null hypothesis
hr_anova %>%
specify(response = hours, explanatory = status) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups: replicate [1,000]
hours status replicate
<dbl> <fct> <int>
1 36.4 fired 1
2 35.8 ok 1
3 35.6 fired 1
4 39.6 promoted 1
5 35.8 ok 1
6 55.8 ok 1
7 63.8 promoted 1
8 40.3 fired 1
9 56.5 promoted 1
10 50.1 ok 1
# ... with 499,990 more rows
The output has 500,000 rows
calculate the distribution of statistics from the generated data
Assign the output null_distribution_anova
Display null_distribution_anova
null_distribution_anova <- hr_anova %>%
specify(response = hours, explanatory = status) %>%
hypothesize(null = "independence") %>%
generate(reps = 1000, type = "permute") %>%
calculate(stat = "F")
null_distribution_anova
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 1,000 x 2
replicate stat
<int> <dbl>
1 1 2.39
2 2 0.408
3 3 1.35
4 4 0.0396
5 5 0.991
6 6 1.21
7 7 0.643
8 8 0.594
9 9 0.00979
10 10 0.616
# ... with 990 more rows
visualize the simulated null distribution
visualize(null_distribution_anova)
calculate the statistic from your observed data
Assign the output observed_f_sample_stat
Display observed_f_sample_stat
observed_f_sample_stat <- hr_anova %>%
specify(response = hours, explanatory = status) %>%
calculate(stat = "F")
observed_f_sample_stat
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 1 x 1
stat
<dbl>
1 115.
get_p_value from the simulated null distribution and the observed statistic
null_distribution_anova %>%
get_p_value(obs_stat = observed_f_sample_stat, direction = "greater")
# A tibble: 1 x 1
p_value
<dbl>
1 0
shade_p_value on the simulated null distribution
null_t_distribution %>%
visualize() +
shade_p_value(obs_stat = observed_f_sample_stat, direction = "greater")
If the p-value < 0.05? yes
Does your analysis support the null hypothesis that the true means of the number of hours worked for those that were “fired”, “ok” and “promoted” were the same? no