Hypothesis Testing

Using computer simulation. Based on examples from the infer package. Code for Quiz 13.

Load the R packages we will use.

Question: t-test

set.seed(123)

hr_2_tidy.csv is the name of your data subset

hr  <- read_csv("https://estanny.com/static/week13/data/hr_2_tidy.csv", 
                col_types = "fddfff") 

use skim to summarize the data in hr

skim(hr)
Table 1: Data summary
Name hr
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 4
numeric 2
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
gender 0 1 FALSE 2 mal: 256, fem: 244
evaluation 0 1 FALSE 4 bad: 154, fai: 142, goo: 108, ver: 96
salary 0 1 FALSE 6 lev: 95, lev: 94, lev: 87, lev: 85
status 0 1 FALSE 3 fir: 194, pro: 179, ok: 127

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age 0 1 39.86 11.55 20.3 29.60 40.2 50.1 59.9 ▇▇▇▇▇
hours 0 1 49.39 13.15 35.0 37.48 45.6 58.9 79.9 ▇▃▂▂▂

The mean hours worked per week is: 49.4

specify that hours is the variable of interest

hr  %>% 
  specify(response = hours)
Response: hours (numeric)
# A tibble: 500 x 1
   hours
   <dbl>
 1  78.1
 2  35.1
 3  36.9
 4  38.5
 5  36.1
 6  78.1
 7  76  
 8  35.6
 9  35.6
10  56.8
# ... with 490 more rows

hypothesize that the average hours worked is 48

hr  %>% 
  specify(response = hours)  %>% 
  hypothesize(null = "point", mu = 48)
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500 x 1
   hours
   <dbl>
 1  78.1
 2  35.1
 3  36.9
 4  38.5
 5  36.1
 6  78.1
 7  76  
 8  35.6
 9  35.6
10  56.8
# ... with 490 more rows

generate 1000 replicates representing the null hypothesis

hr %>% 
  specify(response = hours)  %>% 
  hypothesize(null = "point", mu = 48)  %>% 
  generate(reps = 1000, type = "bootstrap")
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500,000 x 2
# Groups:   replicate [1,000]
   replicate hours
       <int> <dbl>
 1         1  39.7
 2         1  44.3
 3         1  46.8
 4         1  33.7
 5         1  39.6
 6         1  39.5
 7         1  40.5
 8         1  55.8
 9         1  72.6
10         1  35.7
# ... with 499,990 more rows

The output has 500,000 rows

calculate the distribution of statistics from the generated data

null_t_distribution  <- hr  %>% 
  specify(response = hours)  %>% 
  hypothesize(null = "point", mu = 48)  %>% 
  generate(reps = 1000, type = "bootstrap")  %>% 
  calculate(stat = "t")

null_t_distribution
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 1,000 x 2
   replicate   stat
       <int>  <dbl>
 1         1  0.891
 2         2 -0.526
 3         3 -0.386
 4         4 -0.893
 5         5  0.491
 6         6 -0.483
 7         7  2.08 
 8         8 -1.23 
 9         9 -0.424
10        10 -1.21 
# ... with 990 more rows

visualize the simulated null distribution

visualize(null_t_distribution)

calculate the statistic from your observed data

observed_t_statistic  <- hr  %>%
  specify(response = hours)  %>% 
  hypothesize(null = "point", mu = 48)  %>%
  calculate(stat = "t")

observed_t_statistic
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 1 x 1
   stat
  <dbl>
1  2.37

If the p-value < 0.05? yes (yes/no)

Does your analysis support the null hypothesis that the true mean number of hours worked by female and male employees was the same? no (yes/no)

Question: 2 sample t-test

hr_1_tidy.csv is the name of your data subset

hr_anova <- read_csv("https://estanny.com/static/week13/data/hr_1_tidy.csv", 
                col_types = "fddfff")

Q: Is the average number of hours worked the same for both genders?

use skim to summarize the data in hr_2 by gender

Use geom_boxplot to plot distributions of hours worked by gender

specify the variables of interest are hours and gender

hypothesize that the number of hours worked and gender are independent

generate 1000 replicates representing the null hypothesis

The output has 500,000 rows

calculate the distribution of statistics from the generated data

visualize the simulated null distribution

calculate the statistic from your observed data

get_p_value from the simulated null distribution and the observed statistic

shade_p_value on the simulated null distribution

Is the p-value < 0.05? no (yes/no)

Does your analysis support the null hypothesis that the true mean number of hours worked by female and male employees was the same? yes (yes/no)

Question: ANOVA

hr_3_tidy.csv is the name of your data subset

hr_anova <- read_csv("https://estanny.com/static/week13/data/hr_1_tidy.csv", 
                col_types = "fddfff") 

Q: Is the average number of hours worked the same for all three status (fired, ok and promoted) ?

use skim to summarize the data in hr_anova by status

hr_anova %>% 
  group_by(status)  %>% 
  skim()
Table 2: Data summary
Name Piped data
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 3
numeric 2
________________________
Group variables status

Variable type: factor

skim_variable status n_missing complete_rate ordered n_unique top_counts
gender fired 0 1 FALSE 2 fem: 96, mal: 89
gender ok 0 1 FALSE 2 fem: 77, mal: 76
gender promoted 0 1 FALSE 2 fem: 87, mal: 75
evaluation fired 0 1 FALSE 4 bad: 65, fai: 63, goo: 31, ver: 26
evaluation ok 0 1 FALSE 4 bad: 69, fai: 59, goo: 15, ver: 10
evaluation promoted 0 1 FALSE 4 ver: 63, goo: 60, fai: 20, bad: 19
salary fired 0 1 FALSE 6 lev: 41, lev: 37, lev: 32, lev: 32
salary ok 0 1 FALSE 6 lev: 40, lev: 37, lev: 29, lev: 23
salary promoted 0 1 FALSE 6 lev: 37, lev: 35, lev: 29, lev: 23

Variable type: numeric

skim_variable status n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age fired 0 1 38.64 11.43 20.2 28.30 38.30 47.60 59.6 ▇▇▇▅▆
age ok 0 1 41.34 12.11 20.3 31.00 42.10 51.70 59.9 ▆▆▆▆▇
age promoted 0 1 42.13 10.98 21.0 33.40 42.95 50.98 59.9 ▆▅▆▇▇
hours fired 0 1 41.67 7.88 35.0 36.10 38.90 43.90 75.5 ▇▂▁▁▁
hours ok 0 1 48.05 11.65 35.0 37.70 45.60 56.10 78.2 ▇▃▃▂▁
hours promoted 0 1 59.27 12.90 35.0 51.12 60.10 70.15 79.7 ▆▅▇▇▇

Use geom_boxplot to plot distributions of hours worked by status

hr_anova %>% 
  ggplot(aes(x = status, y = hours)) + 
  geom_boxplot()

ggsave(filename = "preview.png", 
       path = here::here("_posts", "2022-05-03-hypothesis-testing"))

specify the variables of interest are hours and status

hr_anova %>% 
  specify(response = hours, explanatory = status)
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 500 x 2
   hours status  
   <dbl> <fct>   
 1  36.5 fired   
 2  55.8 ok      
 3  35   fired   
 4  52   promoted
 5  35.1 ok      
 6  36.3 ok      
 7  40.1 promoted
 8  42.7 fired   
 9  66.6 promoted
10  35.5 ok      
# ... with 490 more rows

hypothesize that the number of hours worked and status are independent

hr_anova  %>% 
  specify(response = hours, explanatory = status)  %>% 
  hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
   hours status  
   <dbl> <fct>   
 1  36.5 fired   
 2  55.8 ok      
 3  35   fired   
 4  52   promoted
 5  35.1 ok      
 6  36.3 ok      
 7  40.1 promoted
 8  42.7 fired   
 9  66.6 promoted
10  35.5 ok      
# ... with 490 more rows

generate 1000 replicates representing the null hypothesis

hr_anova %>% 
  specify(response = hours, explanatory = status)  %>% 
  hypothesize(null = "independence")  %>% 
  generate(reps = 1000, type = "permute") 
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups:   replicate [1,000]
   hours status   replicate
   <dbl> <fct>        <int>
 1  36.4 fired            1
 2  35.8 ok               1
 3  35.6 fired            1
 4  39.6 promoted         1
 5  35.8 ok               1
 6  55.8 ok               1
 7  63.8 promoted         1
 8  40.3 fired            1
 9  56.5 promoted         1
10  50.1 ok               1
# ... with 499,990 more rows

The output has 500,000 rows

calculate the distribution of statistics from the generated data

null_distribution_anova  <- hr_anova %>% 
  specify(response = hours, explanatory = status)  %>% 
  hypothesize(null = "independence")  %>% 
  generate(reps = 1000, type = "permute")  %>% 
  calculate(stat = "F")

null_distribution_anova
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 1,000 x 2
   replicate    stat
       <int>   <dbl>
 1         1 2.39   
 2         2 0.408  
 3         3 1.35   
 4         4 0.0396 
 5         5 0.991  
 6         6 1.21   
 7         7 0.643  
 8         8 0.594  
 9         9 0.00979
10        10 0.616  
# ... with 990 more rows

visualize the simulated null distribution

visualize(null_distribution_anova)

calculate the statistic from your observed data

observed_f_sample_stat  <- hr_anova %>%
  specify(response = hours, explanatory = status)  %>% 
  calculate(stat = "F")

observed_f_sample_stat
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 1 x 1
   stat
  <dbl>
1  115.

get_p_value from the simulated null distribution and the observed statistic

null_distribution_anova  %>% 
  get_p_value(obs_stat = observed_f_sample_stat, direction = "greater")
# A tibble: 1 x 1
  p_value
    <dbl>
1       0

shade_p_value on the simulated null distribution

null_t_distribution  %>% 
  visualize() +
  shade_p_value(obs_stat = observed_f_sample_stat, direction = "greater")

If the p-value < 0.05? yes

Does your analysis support the null hypothesis that the true means of the number of hours worked for those that were “fired”, “ok” and “promoted” were the same? no